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In order to improve our understanding of Boftzmann-type
schemes, which have been recently proposed for the Euler and
Navier-Stokes equations by Prendergast and Xu, we have modified
the gas-kinetic approach and applied it to simple hyperbolic conser-
vation laws. We found that the gas-kinetic discretization can be
explained in terms of standard central difference and upwind
schemes. Artificial viscosity concepts are reviewed and linked to
the grid size and the physical length scale of the discontinuity.
Also, a new three-dimensional gas-kinetic scheme for the numerical
Navier-Stokes equations, whose solution satisfies the entropy con-
dition, is presented. Two numerical limits of the scheme are ob-
tained. The first one is the one-step Lax-Wendroff scheme, and
the second one is the kinetic flux vector splitting scheme. A new
relaxation scheme for steady state calculations is aiso formulated
and implemented in the multigrid time stepping technique of Jame-
son. When applied to the Euvler equations, the resulting method
yields high accuracy and fast convergence to a steady state.  © 1995
Acadamic Press, Inc.

1. INTRODUCTION

Many high resolution shock capturing schemes have been
developed i the past 15 yewrs. Most of them cither attemt
to resolve wave interactions through upwind biasing of the
discretization, or else explicitly introduce numerical viscosily
in just the amount necded to resolve discontinuities which result
from wave interactions. Since many standard upwind schemes
can be recovered exactly by the addition of appropriately de-
fincd nuimerical viscosily to a central difference scheme, the
two class of schemes are not entirely diflerent, and a unified
theory covering both approaches can be developed [13, 20, 40].

High-order upwind schemes are closely related to the propa-
gation of characteristics, Well-known examples are flux vector
sphiting and Godunov-type schemes. The interpolation tech-
niques first create discontinuities at cell boundaries, and the
wave interactions formed from these discontinuitics are fol-
lowed. A high-resolution interpolation in space will not produce
a final scheme with the same order of accuracy in time if the
Riemann problem is simply solved according to the initial
“jump.”” The temporal accuracy of upwind schemes can be
improved cither by impfementing a Runge-Kutta integration
method [38] or by capturing complicated wave inleractions
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inside a time step [2, 6, 1. In an upwind scheme, physical
discontinuitics are usually captured accurately by the inclusion
of implicit viscosity built into the scheme. However, an entropy
fix, in which viscosity is expliticly added in the neighborhood
of the sonic point, is generally needed to prevent unphysical
discontinuous expansions.

When numerical viscosity is added explicitly, the starting
point is usually a ceniral difference formula, the construction
of which implicitly assumes a continuous distribution of the
physical quantities. This assumption is intrinsically correct in
smooth regions.  Second-order temporal accuracy can be
achieved with the Lax—Wendroff technigue. To avoid the cost
of calculating the Jacobian mairices connecting the spatial and
temporal terims either predictor—corrector or Runge—Kutta
methods are often preferred | 16, 22]. Discontipuities invalidate,
however, the basic assumption behind a central difference
scheme. So do thin shocks or shear layers in viscous solutions,
when the layer (hickness is much smaller than the cell size of
the mesh. Artificial viscosity is therefore introduced 1o suppress
the oscillations which would otherwise appear. Its role is quite
similar to that of physical viscosity, in that it produces a discon-
tinuous layer of linite thickness, which needs to be of the same
ordder ol (the cell size to allow Tor proper resolution on the
computational mesh. The required coefticient of numerical vis-
cosity is at least equal to one-half the product of the wave
speed and the cell width. The use of the minimum coefficient
recovers the first-order upwind scheme |18, 20]. The connection
between upwinding and artificial viscosity was already recog-
nized in the study of transonic potential flow [14. [5]. When
it is introduced in the proper amount, numerical viscosity also
assures that the solution will satisfy the entropy condition [1].
In this crucial role it again has an effect similar to that of the
true viscosity.

Some viscosity is also needed in smooth regions to prevent
odd—even decoupling. In order to obtain higher order accuracy.
it is necessary either to switch (o a higher order diffusive flux,
or else to compensate the diffusion by controlled anti-diffusive
terms. Recently, Jameson has derived a new family of artificial
diffusion models based on the local extremum diminishing
(LED) principle [20]. The essential requirements of a good
numerical scheme are high accuracy in the treatment of continu-
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ous flows, especially for Navier—Stokes calculations [42], to-
gether with high resolution and clean capture of discontinuous
layers, In effect such a scheme should combine the best features
of both central difference and upwind approximations.

Due to the intrinsic upwinding and multidimensional proper-
ties of particle motion, gas-kinetic schemes [12, 35] have begun
to attract increasing attention. Chu [5], Sanders and Prendergast
{37], Pullin {30], Reitz [32], Macrossan [24], Desphande [8],
Perthame [27], Eppard and Grossman [10] and many others
have investigated and constructed this kind of schemes. Most
of the schemes developed so far are based on the collisionless
Boltzmann equation, yielding results which are more diffusive
than those obtained from classical high resolution difference
schemes. In order to overcome this problem, a new gas-kinetic
method based on the collisional BGK model has been developed
for both the Euler and Navier—Stokes equations [29, 47]. In
this paper, we modify the original method and study its connec-
tions with the Lax—Wendroff and flux—vector splitting schemes.

This paper is organized as follows. Section 2 describes the
apphcation of the general gas-kinetic technique to the linear
advection equation. Section 3 presents a new scheme for the 3D
Navier—Stokes solutions, followed by some important analysis,
such as the entropy condition. Also, a simplified gas-kinetic
relaxation scheme for the steady state Euler equations is derived
at the end of this section. Section 4 is about the numerical
examples for both steady and unsteady flow calculations. Fi-
nally, some concluding remarks will be presented.

2. GAS-KINETIC DESCRIPTION OF HYPERBOLIC
CONSERVATION LAW

Perthame and Tadmor [28] have proved that a nonlinear
kinetic equation is well suited to describe general multidimen-
sional scalar conservation laws. The gas kinetic construction
for hyperbolic equations, is however, not unique. In this section,
we present a specific gas-kinetic construction for the linear
advection equation. The resulting equation is solved numeri-
cally by applying the techniques developed in [29, 47]. At the
same time, some modifications of the original schemes are
presented. At the end of this section we analyze the resulting
numerical flux, and contrast them with classical Lax—Wendroff
and upwind methods.

2.1. Gas-Kinetic Reconstruction of the Linear
Advection Equation

Roe pointed out that most upwind schemes essentially de-
scribe a mechanism by which any algorithm developed for the
numerical solution of the linear advection equation U, +
cU, = 0 can be generalized to the case of the non-linear system
[35]. Gas-kinetic schemes based on the Boltzmann equation
are formulated instead directly for the Euler and Navier—Stokes
equations. This complicates the analysis for the simple linear
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problem since a gas-kinetic description for the lincar advection
equation must be constructed first.
Consider the linear advection equation

U, + el, =0, )]

where U is the solution and ¢ is the wave speed. For any
numerical scheme, the smallest length scale that can be resclved
is the grid size Ax. In reality, a sharp gradient or discontinuity
could exist with the length scale & such that &/ < Ax. Since
the numerical grid size Ax requires us to approximate & = Ax
at best, we must increase artificially the thickness of discontinu-
ities. As a result, the real equation to be solved is U, +
cll, = vU,, rather than Eq. (1), where » makes & = Ax near
discontinuities, and it should be reduced as much as possible
in smooth regions.

In order to approach Eq. (1) from gas-kinetics, I/ must be
considered as an average quantity of a group of microscopic
particles. The dynamics of these particles can be described by
a distribution function f(x, ¢, u), defined as

Ulx,n) = J’i: flx, 1, u) du,

where u is the individual particle velocity. The evolution of f
is properly described by the Boltzmann equation, where bi-
molecule collisions are considered. However, due to the intrin-
sic difficulty of solving the collisional term in the Boltzmann
equation, approximate collisional models are usnally used. One
of the widely used models is the BGK model [3]. This is

Jo+ufo= (2 — i, (2)

where g is the equilibrium state which the real gas distribution
function fapproaches in a time scale of the order of the collision
time 7 which is a local constant. Since the integrals of g and
f1n velocity space represent the same macroscopic quantity U/,
we have the following compatibility relation

[Z¢-gdu=0 Var. @

For the linear advection equation, the equilibrium state g can
be constructed as

g = VMrUe o,

where I/ and ¢ are the corresponding quantities in Eq. (1), and
1/A is an equivalent temperature. In an equilibrium state, when
f= g, Eq. (Z) reduces to g, + ug, = 0, which allows the precise
recovery of the linear advection (Eq. (1)) through integration
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in velocity space,

g [+w ] +o
S edu+ = [ ugau=o,
) 8dut | ugdu=0

On the other hand, by using a Chapman-Enskog expansion,
one obtains the viscous advection equation

U + cl, = vU, (4)

directly from Eq. (2). Here, the viscosity coefficient v depends
on the gas temperature 1/A and collision time 7 through the re-
lation

=T
v= 7%
Therefore, a numerical scheme developed from Eq. (2) will
automatically be suitable for Eq. (4), and the viscosity coeffi-

cient ¥can be controlled through the collision time and gas tem-
perature.

2.2, Gas-Kinetic Scheme for the Advection Equation

The numerical flux is the moment of the gas distribution
function f, defined by

F(x, 1) = f " uf(x,t,u) du.

In the one-dimensional case, by letting x; be the cell center and
X112 the cell interface, Eq. (2) can be integrated over u, x, and
1, to yield the update formula

'n+t
upt = U+ [ (F Qa0 = F(gan, 0)d,

where # is the step number and T = "' — ¢" is the time step.

In the following, without loss of generality, the initial time ¢
will be assumed to be zero.

To complete the numerical scheme f must be estimated at
cell boundaries. The general solution of f from Eq. (2) at the
cell interface x,, is

1 ¢ oty _
S, tbu) = ;L g L we 0 dE + e dffb(xji-lﬂ — ut),

(5)

where x' = x;.,, — u(t — ') is the particle’s trajectory, and f,
is the initial gas distribution function f at time ¢ = 0. This
solution requires explicit expressions for both the equilibrium
state g and the initial nonequilibrium gas distribution function
Jo. In order to simplify the notation and without loss of general-
ity, we derive the formulas at the cell boundary x;1;;; = 0 using
a cell size Ax = 1.

In smooth regions, it is reasonabie to assume that the initial
gas distribution function f; is a Maxwellian around x = 0.
However, near discontinuities, two different distribution func-
tions to the left and right sides of the cell boundary should be
assumed, especially in the case where the cell size is much
larger than the discontinuity thickness. Thus, we can expand
Jo(x) separately on both sides of the cell boundary. To second-
order accuracy, f, can be taken as

£+ alx),
2’1 + ax),

x<<0

Jolx) = { {6)

x>0

where both g = VA/zUe™* <" and g = VM rU,e " are
Maxwellians, and &' and o’ are local constants, respectively to
the left and to the right of the cell interface. There are four
unknowns U/, ¢, U,, and &', which must be found from the
initial data U at + = 0. As with the Godunov-type schemes,
a variety of interpolation techniques can be used here. For
example, U, = U, a' = 0, U, = Uy, and " = 0 yield a first-
order accurate scheme.

Jameson has recently developed a general symmetric limited
positive (SLIP) formulation from the local extremum diminish-
ing (LED) principle [20]. Following the SLIP construction, &',
a’, Uy, and U, can be expressed as

a= Uit ie
U = (jo - %ejﬂ
7
. (7)
Q==
Lh
€41
a = =,
Ur

where ¢; is the limited average of ¢, = L(AU. n, AU p)
with AUy = Uy — U, and L{u, v) is a limiter with the
following properties:
P L(u,v) = L(v, u)
Py Llau, av) = al(u, v)
Py L(u,w)=u
Py L(u, v) = 0if u and v have opposite sign.
A number of specific limiters L can be found in {41, 20].
The distribution function g corresponding to the equilibrium

state will be smoother than f. Thus it can be expanded locally
across the cell boundary as

glx, 0 = g} + ax + Ap, (8
where g is a local Maxwellian g, = V MwUe™ and @ and
A are local constants. After taking the limit of Eq. (5) as
t — 0 and substituting it into Eq. (3), gpatx = O0andt =0
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can be obtained from f;, which is

Tgodu={"" fydu
where
g, u>0,
fo= {g*, < 0. ©
Hence, U can be obtained explicitly as
U =T, erfe(—VAe) + 1 U, erfe(VAc) (10)

where (erfc) is the complementary error function. The other
term in Eq. (8), @, can be obtained at time ¢ = 0 from a limited

average of the slopes Upse = Uy — Upyp and Uiy =
Uj - l]‘,‘_l , a8
e.
a=—L", (an
U
where €41, = L{AU}y3, AU-1p). Now the only unknown term

left in Eq. (8) is A, which must be determined considering the
gas evolution. This reconstruction of g, differs from that used
in previous work of the first author [29, 47], in which U was
found by simple interpolation of the macroscopic solution U;.
The new formulation introduces an upwind bias which takes
into account the motion of individual particles. Although both
g and f, have been expressed in terms of the equilibrium Max-
wellian distributions, they represent different physical quanti-
ties: g is the presumed equilibrium state across the cell boundary
and f, is the initial nonequilibrium gas distribution, which woutd
approach g in the gas evolution process. The nonequilibrium
character of f;, which is made up of two half-Maxwellians, can
be inferred from Eq. (9).
Substituting Eq. (6) and Eq. (8) into Eq. (5), one obtains

FO )= (1 —e gy + (v(—1 + &™) + te™"uag,

(12) -

T — 1+ e "Ag + e fy(—ut),

which is the desired approximation to the distribution function
f at the cell boundary x;..,2. Also, from Eq. {6) we obtain

{8’(1 — dlur),
Jolmut) = g (1 — aun,

u >0,
u << 0,
where 4 is the only remaining unknown. The calculation of A
requires the use of the compatibility constraint equation (3).

Combining f and g which are solutions of Eq. (12) and Eq. (8),
respectively, we get
f—eg=—e"g+ (r(—1+ ") + te " uuag,

+ (=1 + e )Agy + e i (—ut).
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Substituting the above expression into Eq. (3) and integrating
over a whole time step 7, we obtain A explicitly as

A=f + Bca + 1 ,83{ erfe(—VAe) +% rfc(\f,\c)}
+i8 {Ul (erfc( \/Xc)c + _M)
T VT A
e Ac
(erfc(\/—c)c - ——)},
VA
where

—T!r)

Bo=T
Bi=—(1—e ™™g,

B.=(-T+ 27— 27+ e ™)/,
Bi=(1—e™)if
Bi=(—7+({t+ De " }B,.

-7l —e¢

Note that (f — g) is a function of time and thus the integration
over a time step allows the compatibility condition equation
(3} to be satisfied on the average. Our procedure for computing
f and g removes the stiffness from the original BGK model
and allows the determination of the time step T by the usual
macroscopic Courant—Friedrichs—Lewy (CFL} condition. This
will be referred to as the CFL time step in the following para-
graphs. Otherwise, the numerical stability condition for Eq. (2)
would require T = 7, which, as in most lattice gas Boltzmann
codes, would strongly restrict the efficiency and applicability
of the numerical schemes for hydrodynamic simulations.
Having obtained a complete estimate of the distribution func-
tion fat the cell interface, we can write down the final expression
for the time dependent numerical flux. From Eq. (12) we obtain

F(xper, 1) = (o + 0‘318‘)6[_]

1 -
+ (ap_ (c + ﬁ) + Q3B2C2) al/

a3z + ) erfe(— \f)lc) +

Acz}

\/_

{e: 83 + o) erfc(\/_

f
+{4 Yo
i (asm + a1 ) etV
+ #ﬁ (asBs + as)e™ } a'l,

[

- ;\CZ} E{r
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+ {é <c2a384 + o (02 + %)) erfe(Vac)

C - T
BV (33 + as)e }ﬂ U, (13)

with

= (1 — ),
= (r{—1+ &)+ 1)

o= T(Hv— L+ e,

=T

&y =€ "

o = —te”m,

The numerical flux is exact for a uniform flow (U=U=
U,=Uandd = & = a = (), and therefore it satisfies the
consistency condition F(U, U) = cU.

2.3, Analysis

The gas-kinetic scheme for the linear advection equation has
been derived from two initial distribution functions; one is the
equilibrium state g expanded across the cell boundary, and
the other is the initial nonequilibrium distribution function f;
expanded at both sides of the cell boundary. In the following,
four limiting cases based on the above scheme will be analyzed.

Case (1). In the hydrodynamic limit, the collision time r is
usually much smaller than the CFL time step T (7 <€ T). To
first order in 7, Eq. (13) reduces to

AWy (T
F i, 1) = (1 - 7,) cll + (_Z‘TA — et + —TT—) al

I -5 t -
+ ﬁ,erfc(f\/Xc)cU, + zpf,erfc(\/Xc)cU,

(14)

T C 2 —
— = | erfe(—VAc)e? + e )a’U
2T( ( ) VA !

IT [
— | erfe(Vac)c? -
ZT( ( ) VA

e-)«;) ar“Ur.

In smooth regions, the assumption that g = g in f; is a good
approximation. Under these circumstances, Eq. (14) can be
further simplified as

F (Xjs112, ) = ¢U — 17l — iaﬁ. (15)

This flux, which has been derived from the solution of the BGK
equation (13), is identical to the numerical flux in the one-step

Lax—Wendroff scheme for the viscous advection equation of
U + cl, = vU, with v = 7/2A. If we also take U = (U, +
U2 and @ = (U, — U)/U, the final flux of Eq. (15) can
be writien as

Fi+ Fyq

F(xjr12,1) = 5

— 1A (Ui — Up) — (Ujiq — Uy,

with F; = cU,. The first term on the right-hand side of this
equation is the usual Euler flux, while the second one is the
flux needed to account for the Lax—Wendroff procedure. The
third term is the artificial dissipation flux if we require {/, +
cU, = 0 as our model equation. However, if we want to solve
the viscous equation U, + ¢U, = v/, then the third term
represents the physical viscous flux. Actually, this is the precise
reason why the BGK model can give an account of the Navier—
Stokes solutions. As we know, the Lax—Wendroff scheme gives
oscillatory solutions in the strong discontinuity regions if » is
not large enough (the discontinuity thickness is much less than
the grid size Ax). An additional dissipation must be added to
improve the accuracy. If the temporal resolution is reduced by
taking F(x;12, 1) = F(x;212, 0), then one obtains the
Lax-Friedrichs scheme by setting /A = Ax/cAt. Therefore,
the Lax—Friedrichs scheme can be also understood in terms
of gas-kinetics, where the flow variable 7/A is related to
the grid size and time step.

Case (2). When 1 goes to o, the BGK model reduces
to the collisionless Boltzmann equation

£uf=0.

In this case, instead of Eq. (12), the solution of f at the
cell boundary (x = 0) is

f: fD(_l‘”)a
with
g —dur)y, u>0
So(ut) = {g’(l —a'ut), <0, (16)

Only the last term in Eq. (12) is kept in this equation.
Physically, the collisionless Boltzmann solution should give
very large viscosity, since the particles could always remain
in an extreme non-equilibrium state. However, the en-
forcement of two Maxwellians for f;; at the beginning of
each time step (Eq. (16}) effectively reduces the viscosity.
But, the permanent two half-Maxwellians would always
keep a certain amount of viscosity in the scheme. This is
highly undesirable for Navier—Stokes solutions. Currently,
most Boltzmann-type upwind schemes are hased on the
solution of the collisionless Boltzmann equation [8, 30, 32,
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27, 10], and have an intrinsic ¢onnection with the flux
vector splitting schemes [26]. In order to distinguish more
precisely the collisionless Boltzmann equation and the
BGK model, it is useful to compare the numerical fluxes
which they produce in first-order accurate formulations.
The flux for the collisionless Boltzmann equation can be
formulated as

(F + +1) Jet

clt
Fj+1.'2 2 _r+11‘2,

where a‘fi'l,z is the diffusion term. This can be written as

A, = [5 (1 — erfe(VAe)) + Usi).

2\/—] =

On the other hand, from the BGK model, the correspond-
ing diffusive flux is

dPB, = [2 c(l — erfc(\/ic)) + g7 26\/{2—} (U= Uiy).

The condition for the scheme to be local extremum dimin-
ishing (LED) [20] is that the coefficient of U;,, — U equals
or exceeds ¢/2. This is always satisfied by d¢!, since

1 = Viame™ erfe(m)

holds for all m = V/Alc| (Note. m is the equivalent Mach
number since the equivalent speed of sound is proportional
to the square root of the temperature 1/A). In contrast,
the scheme obtained from the collisionless Boltzmann
equation could never reduce to the least dissipative first-
order LED scheme,

_ [
F:H-lfz -
CL]}‘{-] »

ifc >0,

ifc <

This would require that Vrme™ erfe(m) = 1 which is only

possible for an infinitely large Mach number #. From the
BGK model, the least dissipative scheme can be obtained
casily at finite gas Mach number by choosing the gas relax-
ation rate e " to depend on the Mach number. This can
be achieved by setting ™" = Vame™ erfc(sn). Thus, the
BGK model gives a less dissipative scheme than the colli-
sionless Boltzmann equation.

Case (3). In order to get a time-independent flux formu-
lation, all the high-order time-dependent terms in Eq. (12)
might be dropped, and the final gas distribution function
fis simplified as

f: (1 _ e—u‘q-)go + eﬁm 0,

with

u>0

fe {g’,

g, u<@

In the above scheme, f; is first determined from the limited
interpolations of U; and U, in Eq. (7), and U in g, is ob-
tained from f; using Eqg. (10). The final numerical flux can
be written as

(cU;+ cU,
Fion = IT) diirz,
where d;, 1, Is a diffusion term:
1 i .g"““2 — —
diipn = |:§ c(l - erfc('\/XC)) + e ”2—“ (T, ~ 0.

Also, from the analysis in Case (2), ™" can be estimated
from the local flow variables. One choice is to take it as a
function of local Mach number, namely

e = \Vrme™ erfc(m),

where m = VAlc|. In this case, the least dissipative high-
order upwind scheme is recovered, which is

CT];
Fivip= T

ifc >0,
ife<0.

Case (4). When the complete numerical flux formula-
tion (13) is used for the solution of the viscous advection
equation, T should be composed of two parts:

7=2Mw, + 1)

Here v, is the real physical viscosity, and », is the artificial
one. The reason for the artificial viscosity is to satisfy the
numerical requirement that the discontinuity thickness 81
should not be smaller than one cell size Ax. The increment
of 7in the discontinuity region will automatically enlarge
the physical thickness &/ so as to match the grid size Ax.
The gas-kinetic scheme developed for the advection
equation in this section falls between the Lax—Wendroff
{from equilibrium state g) and flux—vector splitting
schemes {(from the nonequilibrium initial distribution f;}.
The final flux represents a complicated nonlinear coupling
between these two limits through the collision time 7.
The same technique presented in this section could also
be used for other hyperbolic equations, provided that an
equivalent BGK model can be constructed. For example,
fitufy =~ g)/q- with an equilibrium state g of g =
UN/Ame=@=U2" can be applied to solve the viscous Burg-
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ers’ equation
U, + (U%2), = vU,,

with » = 7/2. Also, the three-dimensional linear advection
equation [36]

U, + aU, + bU, + cU, = 0

can be solved using the BGK model f, + uf, + vf, +
wf, = (g — f)/7, assuming the equilibrium distribution

g =1 /()‘/n )3/2 Ue—p\[(u—a}2+(v—b)2+(w~c)2]'

3. GAS-KINETIC SCHEMES FOR 3D
HYDRODYNAMIC EQUATIONS

The numerical flux obtained using the gas-kinetic formula-
tion for the linear advection equation appears much more com-
plicated than those obtained from other standard central differ-
ence or upwind schemes. The real advantage of the gas-kinetic
approach over more conventional methods is realized when
one considers the Euler and Navier—Stokes equations. In fact,
by requiring only a single scalar gas distribution function f, the
gas-kinetic approach greatly simplifies the calculation of mass,
momentum, energy densities, and their fluxes.

Gas-kinetic schemes developed from the BGK model have
been successfully applied to 1D and 2D flows [48]. In this
section, we construct a novel 3D method and extend the analysis
of the previous section to systems of conservation laws. In
particular, the extension of the method analyzed in Case (3) of
the previous section yields a very interesting discretization
scheme for the steady BEuler equations.

Furthermore, we will show that the proposed gas-kinetic
scheme satisfies the entropy condition (i.e., the so-called H-
theorem).

3.1. Finite Volume Gas-Kinetic Scheme in Three Dimension

In the finite volume method [18, 19], the discretization is
accomplished by dividing the flow into a large number of
small subdomains and by applying the conservation laws in
the integral form

d
ELJMW+ImFdS—O (17)

to each subdomain {2 with boundary 4€}. In this equation U is
the mascroscopic state vector, defined as

<
i
"'U:U'b

(18)

muhu%

where p, P and ¢ are the mass, momentum, and energy
densities, and F is the flux vector with components F, ,F,,
and F, in the three coordinate directions. In a gas-kinetic
finite volume scheme the flux vectors across cell boundaries
are constructed by computing the gas distribution function
f- In three dimensions, the governing equation for f is
described by the BGK model [3], which is

fituf,+vfi+wf.=(g— i, (19)
where f is a function of space (x, v, z), time ¢, particle
velocity (u, v, w), and internal variable £ with K degrees
of freedom (i.e., K = 2 for v = 1.4 gases in 3D). The
relations between mass p, momentum P, and energy ¢
densities with the distribution function f are

™

>

R

=J¢'nde, =12 .3, (20)

o

vl

where i, is the vector of moments

and d& = du dv dw d£is the volume element in the phase
space [45]. The equilibrium state g in the BGK model has
a Maxwellian distribution of

g= Ae-A((u—m2+<v—V)2+(w—W}2+_s2),

where U, V, and W are macroscopic gas velocities. For an
equilibrium gas flow with f = g, the Euler equations in
three-dimensional space can be obtained by taking the
moments of #, in Eq. (19). On the other hand, to the first
order of 7, the Navier—Stokes equations, with a dynamic
viscosity coefficient of 7p (where p is the pressure), can be
derived from the Chapman-Enskog expansion [4]. Since
mass, momentum, and energy are conservative quantities
in the process of gas evolution, f and g have to satisfy the
conservation constraint of

:57

[(ts—hHwmdaz=0, a=12,. 1)

at any point in space and time.
The general solution for fin Eq. (19} in three dimensions
at the position of (x, y, z) and ¢ is

1 .
f(xa .o, Luvw, §) == I:] g(x,': y’! 2’7 L, v, w, g)eV(hr)hdt,
T

+ehx —wt,y —ve,z —wi), (22)
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where x’ =x — (e — ),y =y — vt —1), 2 =2z -
w(t — 'Y are the trajectory of a particle motion, and f; is
the initial nonequilibrium gas distribution function f at the
beginning of each time step (v = 0). Two unknowns g and f;
must be determined in the above equation to abtain the solu-
tion f. In order to calculate the evolution of the macroscopic
quantities in Eq. (20), Eq. (19) can be integrated over u, v,
w, x, ¥, z, and ¢ for a control volume defined by a mesh cell
and a time step T. This requires the evaluation of fluxes across
cell boundaries. We will consider the evaluation of fluxes
across a boundary separating two cells in the x direction and,
to simplify the notation, the point for evaluating fluxes at the
cell boundary will be assumed at (x = 0,y = 0,z = 0).

Generally, f; and g can be expanded around the cell bound-
ary as

{g"(l +ax + by +c'z), x<0,
= 23
’ gl +ax+bdytez), x>0, @3)
and

g =go(1 +ax+ by +cz+ A, 24)

where ¢/, g, and g, are local Maxwellian distribution functions.
The dependence of a', &, .., A on the particle velocity can
be obtained from the Taylor expansion of a Maxwcllian, which
have the form

a'=a; +awu + azv + agw + as(@ + v + w’ + £7),

Z=Zl +Zzu+23v+z4w
_ (25)
+ A5G+ F w8,

where all coefficients of a,, a;, .., LA}, are local constants. The
idea of interpolaling f; separately at the regions of
x < 0 and x > 0 follows from physical considerations: for a
non-equilibrium gas flow, the physical quantities can change
dramatically from place to place, such as across a shock front
where the upstream and downstream gas distribution function
f could be different Maxwellians. In the 1960s, the idea of
using two Maxwellians had been successfully applied in many
problems, such as the calculations of shock structure and
Couette flows [21, 4].

In the following, the SLIP formulation [20], similar to that
used for the linear advection equation, will be used for
the interpolations of all initial mass, momentum, and energy
densities in the x, y, and z directions, respectively. After
implementing the limiters, the macroscopic variables can

be obtained in the left

(x = 0) separately,

(x < 0) and right sides

p=potpxtpytpz
.ﬁx=P10+lex+Px2y+Px3z
P,=Py+ Pux + Py + Pz (26)
P.=Py+Pax+ Poy+ Pz

e=gg+ex + eyt ez,

where py, g1, ..., £3 are local constants. The expansions (23} and
(26) are substituted into the moment equation (20)} to yield

ol

(27

e

- J dfodS, a=12,..,5,

n:l

4

m]

All the coefficients in f; can be obtained directly. Then, g,
in Eq. (24) at (x =0,y = 0,z = 0, = 0) can be evaluated
automatically by taking the limit of Eq. (22) as t — 0 and
substituting it into Eq. (21} to obtain

[gotuaz = [ [gv.d= o

#o g0 a=12.

This stage is different from the method which was pre-
viously used [29, 47] to obtain gy.

The other terms of @, b, and ¢ in Eq, (24) at t = 0 can
be computed from the new mass, momentum, and energy
interpolations which are continuous across the cell bound-
ary in all three directions. Now, the only unknown term
left in Eq. (24) is A. This can be evaluated as follows by
substituting Eq. (23) and Eq. (24) into Eq. (22); we get

£(0,0,0,,u,v,w, &) = (1 — e™g,
+{(r{(-1+e")
+ te Y ua + vh + wt)g, (29)
+r(tlr—1+ e'”f)ATgU

+ e fo —ut, —vt, —wi),
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with
20 — dlut — Bvr — clwt), u>0,

fol—ut, —vt, —wt) = {

gl —adut — bvi — c'wr), u<0.
Both f (Eq. (29)) and g (Eq. (24)) contain A. After applying
the condition {(21) at (x = 0, y = 0, z = () and integrating it
over the whole time step 7, such as

[0~ nyeazar=o, (30)

five moment equations of A can be obtained, from which the
five constants in A of Eq. (25) can be uniquely determined.
Finally, the time-dependent numerical fluxes in the x-direction
across the cell boundary can be computed as

F, 1
97px it
F.= 95}:} = J’u v
@p: w
. e + v+ w? + )

f(0,0,0,t,u, v, w, &)d=E. (31)
The corresponding fluxes F, and F, in the y and z directions
are similarly obtained by taking moments with v and w, respec-
tively. These fluxes satisfy the consistency condition
F (U, U) = F(U) for a homogenecus uniform flow, where
F(U) 1s identical to the corresponding Euler fluxes in the
3D case.

3.2, Analvsis

Equation (29) gives explicitly the time-dependent gas distri-
bution function f at the cell boundary. In order to understand
this formulation, several limiting cases will be discussed below.

Case (1). In the hydrodynamic limit of 7 <€ T and in the
smooth region of g’ = g’ to first order in 7, Eq. (29) can be
simplified as

F= g1 — 7(ua@ + vb + we) + (t — TA). (32)
Substituting Eq. (32) into the flux formula (Eq. (31)), schemes
which are identical to these obtained from the one-step Lax—
Wendroff scheme for the Navier—Stokes equations can be re-

covered. Also, from the gas kinetic theory, the stress tensor is
defined as

7= [ = U = U)fdE.

For example, usingthe distribution function fin Eq. (32), the
shear stress 7, can be obtained exactly as

Ty = T, (ﬂi—ﬂ)
»= TP dy  ox/’

where 7p is the dynamic viscosity coefficient and p is the local
pressure. Thus, the current scheme can accurately represent the
Navier-Stokes solutions in the smooth flow regions, if the
initial data, such as dU/dy and dV/dx, are interpolated correctly,
since all these terms are included in the final flux formulation
through the terms containing @, b, and ¢. The actual one-step
Lax—Wendroff type scheme for the Navier—Stokes equations
is rarely applied, because it requires the evaluation of many
Jacobian matrices. Therefore, in practice, two-step methods,
such as the two-step predictor and corrector schemes {33, 22]
have generally been preferred. However, with the gas-kinetics
formulation, the matrix transformations are not difficult and
the Navier—Stokes fluxes can be simply obtained without sepa-
rating the viscous and advection terms. In fact, Eq. (32) has
been used successfully for subsonic boundary layer and slight
compressible turbulent flow calculations [48].

Case (2). In the limit of T = oo corresponding to the colli-
sionless Boltzmann equation, the solution of the gas distribution
function fin Eq. (29) reduces to

f=flx—ut,y —vt,z — wn),
where only the last term in Eq. {29) is kept. The final numerical
fluxes in this case can be computed as

¥, 1
Fp, u

af =

JPPJ" fu>0 J’ " v

9‘;}2_ W

F. 3 + 02 + Wk + £

gl — a'ur — bvr — cwi) dE

1
u
+ J J’u v
w<i)
W
2 + 02+ w? + )

g(l —aur — bvt — c'wtydE. (33)

This formulation is intrinsically upwind through the representa-
tion of particle motion and it is precisely the kinetic representa-
tion of flux vector splitting for the Euler equations [12, 35, 39].
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Mandal and Deshpande [26] show that the kinetic flux vector
splitting (KFVS) derived from Eq. (33) is equivalent to the
flux vector splitting of van Leer [43]. Macrossan [24] and
Deshpande [8] note that KFVS has grid-dependent numerical
viscosities and gives excessively dissipative results. Also, the
analysis for the linear advection eguation in Section 2 of this
paper shows that the corresponding first-order KFVS that will
never give the least dissipative upwind scheme. For the Navier—
Stokes solutions, the excessive and unavoidable dissipation
originating from the two half-Maxwellians in KFVS produces
a deterioration in the accuracy of the numerical results [44], in
which an abnormally large numerical mixing of the fluid occurs
within the boundary, or a fictitious pressure gradient is created
that causes an unrealistic convection within the layer [23]. On
the other hand, the collisional BGK model provides a mecha-
nism to reduce the intrinsic dissipation and can give accurate
Navier—Stokes solutions [47].

Case (3). The full Boltzmann scheme gives time-dependent
fluxes, which might handicap the convergence of the scheme to
a steady state. Thus, for steady state calculations, the relaxation
process must be simplified in order to yield constant numerical
fluxes. The easiest way to achieve this is to ignore all high-
order spatial and temporal terms in the expansion of f and g.
So, instead of Eq. (23) and Eq. (24), we use

g, x=0,
f:
’ g, x>0,
and
E = &

as the initial nonequilibrium gas distribution f; and the equilib-
Tium state g. Substituting the above two eguations into Eq.
(22), the solution of f at the cell boundary can be obtained as

F0.0,0, = (1 — e"go + . (34)
The idea of obtaining g, from fj has been independently pro-
posed both in the total thermalized transport (TTT) scheme
[48] and in the equilibrium interface method (EIM) {25]. But
in the latter method, the final Euler fluxes are simply evaluated
from the equilibrium state g, which could lead to difficulties
in the transonic flow regime; since the real gas distribution
function f should stay in a nonequilibrium and physically dissi-
pative state at a shock front. On the other hand, the physical
BGK model (34) always gives a relaxation process, which
can recover the nonequilibrium gas behavior at discontinuities.
Equation (34) can be rewritten as

f=8t e (fy — g (35)

The first term on the right represents the Euler-fluxes. The
second is a diffusive term, which should be large near disconti-
nuities in order to keep fin a nonequilibrium state. This term is
both necessary to prevent numerical oscillations and physically
correct in that it accounts for the nenequilibrium behavior of
the gas flow in the discontinuity region. This requirement makes
e *"have the same functional effect as the parameter £ in the
JST scheme [16], which is controlled by a nonlinear limiting
process. Thus a scheme similar to the JST scheme, with the
Euler fluxes augmented by adaptive diffusive terms, is obtained
from a simplified gas-kinetic formulation, Note that in the gas-
kinetic scheme formulation diffusion is caused by the imbalance
between the equilibrium and nonequilibrium states rather than
the difference between the left and right states. Formally, Eq.
(35) can be written as

f=g+ Em(fo — Bo)s {36)

where £ is the adaptive coefficient. Tn the implementation of
this scheme we first construct f;, from the interpolated macro-
scopic mass, momentum, and energy densities at both sides of
a cell boundary using Eq. (26), where x, y, and z dependent
terms are ignored and the equilibrium state g, is obtained from
fo using Eq. (28). As in the case of time dependent calculations,
the accuracy is improved by the use of higher crder interpolation
with the SLIP formulation to estimate the local constants for
the left and right states, so that in smooth regions, where the
limiters are not active, the magnitude of f, — g is reduced.

3.3. The Entropy Theorem

At this point, it would be interesting to investigate whether
the Boltzmann scheme satisfies the entropy condition. Tt is well-
known that a method satisfying the entropy condition prevents
the formation of expansion shocks. The H-theorem, which has
been described in the kinetic theory of gases as the bridge
connecting equilibrium thermodynamics with non-equilibrium
statistical mechanics, states that the H-function defined by
H = [ fIn f 4= monotonically decreases with time as a
homogeneous gas in statistical non-equilibrium evolves to
equilibrium. In the case of inhomogeneity, the theorem
states that

aH,
ﬂq_*_‘

=0 37
of ax,- ’ ( )

where f; 1s the H-flux defined by

HI-=Ju,-flnde.

In the last section, we have computed the time-dependent
gas distribution function f at a cell boundary (Eq. (29)).
Substituting Eq. {29) into the entropy equation (37), and
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integrating over a time step At = T, the numerical

scheme satisfies

f;(a;j c;f)d o= [ (it up,) dE e

+J;lf(f,+u,f,i) InfdE dt
:%Jirj(g—f)dgdf

+1J2'J(gAf)1ndedt
=1 [g-nnf-ngaza

+1 g-pmgaza

2 i‘f(g—f)mgdsdr
=2 [(g-pang

+1n (1 + Af)) dE dr
:%jj{f(g—f)ln(l + Aty dE di
=H3‘J(g—f)2td5dr+fh(M’
=0+ (A0

Here the property J§ [ (g — f)d. dE dt = 0 in Eq. (30)
has been used to establish that

j:J’(g—f)dEdt:o
J:’f(g_f)lngudidr::o
lef(g_f)ZdE dt = 0

since 1, In gy and A can each be expanded as a combination
of the components of the conservative moments ¢,. These
properties are satisfied numerically in this scheme in the
evaluation of A. Thus we conclude that, to second-order
accuracy, our scheme satisfies the H-theorem on the aver-
age of the whole time step. The additional term of #(As)*
stems from the fact that the Taylor expansions (Eq. (24))
make the actual equilibrium state g deviate from the exact
Maxwellian at the location away from the origin of the
expansion at (x = 0,y = 0, z = 0) and (¢ = 0). Otherwise,

the H-theorem could be satisfied exactly. However, for the
simplified relaxation scheme of Eq. {35), the H-theorem
is satisfied exactly. Also, it can be proved that the entropy
(§ = —kH, k is the Boltzmann constant) of g, is always
larger than that of f;, which is

= - [foln fydZ

= [ (80~ fo) In g0 dZ + [ foin(go/fo) 4=
= [ fotn (eolfo) a2

= folgotty -~ 1) d=

= [ (20 - f) d=
=4

AH = fgg Ing, d

This property guarantees that the local physical system
will approach the state with larger entropy, and prevents
the formation of unphysical rarefaction shocks.

4. NUMERICAL EXAMPLES

4.1, Unsteady Flow Calculations

In [48], many 1D and 2D test cases have been presented
for the numerical Euler and Navier—Stokes solutions using an
earlier gas-kinetic scheme based on the solution of the BGK
equation. It appears that this scheme can give an accurate result
for problems with a strong rarefaction wave in the high-speed
low density regions, such as for the Sjogreen test {9]. Actually,
this is not surprising, since all particles with velocities from
— to -~ have been considered in the process of computing
numerical fluxes. Whereas many other schemes simply use
Mach number as a criterion to determine the directions of
gas movement,

In all the following, we will apply the scheme developed in
this paper to well-known test cases. In all calculations, the van
Leer limiter

2] |u}
Jul + Jol

with §(u, v} = 1/2{sign(u) + sign(v)}, is used in the SLIP
scheme for all interpolations of the conservative variables in
Eq. (26).

We first apply our new Boltzmann scheme (Eq. (31)) to five
unsteady test cases, which include Sjogreen and slowly moving
shock tests in 1D, as well as strong diffracting shock, uniform
Mach 3 flow in a channel with a forward-facing step and double
Mach reflection cases in 2D [46].

L{u,v) = S(u, v)

(38)
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The Sjdgreen test is taken from a recently published paper
by Einfeldt et al. [9]. In that paper, they showed that no scheme
whose interface flux derived from a linearized Riemann solution
can be positively conservative. But, our new scheme is very
nonlinear. The initial data for this case is g, = 1, P, -2,
g =3and p, =1, P, = 2, g = 3 for the left and right sides
initial mass, momentum, and energy densities. Our results are
shown in Fig. | on a mesh of 200 cells. As we know, many
Godunov-type schemes could fail in this problem.

In a well-known paper [34], Roberts found that for slow
shocks, there is a significant error generated when using the
numerical flux from a solution of Riemann’s problem. The
error consists of a long wavelength noise in the downstream,
which is not effectively damped by the dissipation of the Godu-
nov-type schemes. By page count, Colella and Woodward spend
3 of their paper discussing dissipation mechanisms to try and
minimize the problem [7]. Actually, the nature of the shock
structure produced by a particular scheme can have a large
bearing on how well the scheme copes with slowly moving
shock waves. Fortunately, the gas-kinetic model was mostly
applied to shock structure calculations. The following test is a
problem of a Mach 3 shock wave moving slowly from left to
right; the preshock state {(density, velocity, pressure) is (1,
—3.44, 1) and the postshock state is (3.86, —0.81, 10.33). For
a Courant number of one it takes 50 time steps for this shock
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to traverse one mesh cell. The simulation domain is 200 cells
in the x direction, and the original shock is located at the site
of the 100th cell. In order to aveid the error generated from
the initial interpolation, as Roberts did, we simulate this test
using our first-order Boltzmann scheme by ignoring all x-depen-
dent terms in Eq. (26) for 1D interpolations. Figure 2 is a
snapshot of the results at 2000 time steps, where the shock has
moved about 30 cells to the right. As we can see that the
Boltzmann scheme gives a pretty smooth postshock profile.
The next numerical example is a strong shock of Mach
number 5.09 diffracting around a corner [31]. Figure 3, Figure
4, and Figure 5 show the mesh, density, and entropy contours by
our Boltzmann scheme (Eq. (31)). There are not any detection or
entropy-fixes in our calculation. 1t is also known that the original
Godunov scheme, the Roe scheme without the entropy-fix, and
the Osher scheme could give a shock at the rarefaction corner.
The forward-facing step test is carried out on a uniform
mesh of 240 X 80 cells as shown in Fig. 6 and the numerical
results are presented in Fig. 7 and Fig. 8 for the density and
entropy distribution. Here, the collision time used is equivalent
to a Reynolds number of Re ~ 50,000 for the upstream gas
flow regarding the wind tunnel height as the characteristic
length scale. A slip boundary condition is imposed in order to
avoid using finer meshes close to the boundary. There is no
special treatment around the corner, and we never found any
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FIG. 1. Sjbgreen test for strong rarefaction waves.
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FIG. 2. Slowly moving shock wave calculated by first-order scheme.

expansion shocks emerging from the corner. Also, our numeri-
cal experiments verify that the expected qualitative relation
between the Reynolds number and the shear instability ampli-
tude, starting from the triple point, is obtained by changing the
collision time in the BGK model.

The double Mach reflection of a strong shock test is calcu-
lated on the computational domain of 360 X 120. The problem
is set up by driving a shock down a tube which contains a
wedge as shown in Fig. 9. The density and entropy distribution
after the collision between the shock and the wedge are shown

FOHEEEEE

FIG. 3. Mesh distribution of 70 X 70 for Mach 5.09 diffraction shock test.

on Fig. 10 and Fig. 11 The same limiter of Eq. (38) is used
for all conservative quantities.

All these results confirm the accuracy and high resolution
of the gas-kinetic scheme. Complex features, such as oblique
shocks and the triple points, are captured without oscillations.
We seem to do at least as well as other codes, such as PPM
and ENO schemes. The numerical fluxes in our scheme are
obtained from a physical microscopic gas evolution model,
which avoids uncertainties i the macroscopic equation in ex-
treme conditions, such as discontinuities. For strong rarefaction

FIG. 4. Density distribution for Mach 5.09 diffraction shock test.
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FIG.7. Density distribution for Mach 3 wind tunnel test on mesh 240 X 80,
FIG. 5. Entropy distribution for Mach 5.09 diffraction shock test.

FIG. 6. Mesh distribution of 240 X 80 for Mach 3 wind tunnel test. FIG.8. Entropy distribution for Mach 3 wind tunne! test on mesh 240 X 80.
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FIG. 9. Mach 10 reflection shock problem.
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FIG. 10. Density distribution for Mach 10 reflection shock on mesh
360 X 120.

.waves, no entropy-fix is needed in our scheme. The gas-kinetic
scheme also has the advantage that there are no significant
differences between 1D, 2D, and 3D flow calculations.

4.2. Steady Flow Calculations with Multigrid Acceleration

The gas-kinetic discretization scheme formulated in Section
3.1, Eq. (17), (18), and (31) has been used to reduce the Euler
equations to a semi-discrete form

dw
L =0
0t Rw) .

(39)
where w is the vector of flow variables at the mesh points, and
R{w) is the vector of the residuals, consisting of the flux bal-
ances augmented by the diffusive terms which are calculated
in accordance with Eq. (36). In the case of a steady state
calculation the details of the transient solution are immaterial,
and the time stepping scheme may be designed solely to max-
imize the rate of convergence.

If an explicit scheme is used, the permissible time step for
stability may be so small that a very large number of time steps
are needed to reach a steady state. This can be alleviated by
using time steps of varying size in different locations, which
are adjusted so that they are always close to the local stability
limit. If the mesh interval increases with the distance from the
body, the time step will also increase, producing an effect
comparable to that of an increasing wave speed. Convergence
to a steady state can be further accelerated by the use of a
multigrid procedure of the type described below, With the aid
of these measures explicit multi-stage schemes have proved

FIG. 11.
360 X 120.

Entropy distribution for Mach 10 reflection shock on mesh

extremely effective. Implicit schemes allow much larger time
steps, but the work required in each time step may become
excessively large, especially in three-dimensional calculations.
An explicit five-stage Runge—Kutta scheme with implicit resid-
ual averaging and varying local time step is used to drive the
multigrid time-stepping scheme [19, 20].

The multigrid scheme is a full approximation scheme defined
as follows [17, 19]. Denote the grids by a subscript k. Start
with a time step on the finest grid X = 1. Transfer the solution
from a given grid to a coarser grid by a transfer operator Py,
so that the initial state on grid k is

wi = P Wi,
Then on grid k the time stepping scheme is reformulated as
wirt) = w — a,At(R[ + Gy,

where the forcing function G, is defined as the difference be-
tween the aggregated residuals transferred from grid X — 1 and
the residual recalculated on grid k. Thus

G, = G R(wiy) — R(wi"),

where (), is another transfer operator. On the first stage the
forcing term G, simply replaces the coarse grid residual by the
aggregated fine grid residuals. The accumulated correction on
a coarser grid is transferred to the next higher grid by an
interpolation operator ;,_,, so that the solution on grid k — 1
is updated by the formula

Wi = Wiy Logdw — wih.

The whole set of grids is traversed in a W cycle in which time

steps are only performed when moving down the cycle.
Steady state transonic flow calculations for NACAQQ12,

RAE2822, and Korn airfoils using the simplified relaxation
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FIG. 12. Mesh for NACA 0012 aicfoil.
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FIG. 13. NACA 0012 with M = 0.8, « = 0.0, C; = 0.000, C;, = 0.0079.

scheme (36) are presented. In these calculations, the selective
parameter £ is determined by a switching function calculated
from local pressure gradients. Using subscripts / and f to label
the mesh cells, the switching function for fluxes in the 7 direc-

tion is

(40
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FIG.14. NACA0012 withM = 0.8, « = 1.25, C, = 0.3724, Cp = L0232,
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FIG. 15. NACA 0012 with M = 0.85, a = 1.0, C, = 0.3978, C, = 0.587.

where ¢ is a constant,

_ ‘AP.'+1/2J' - AP,‘—l.'z.fl
! lAlellji + |Api i’

P,

and
A17.‘+1.'2.j =Pivy — Pige

In the following calculations, the parameter « in (40) is set to
be & = (}.5. Also the van Leer limiter is again used in the SLIP
formulation for the interpolation of the left and right states.
The computational domain is an O-mesh with 160 cells in the
circumferential direction and 32 cells in the radial direction.
This is a fine enough mesh to produce accurate answers with
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FIG, 16, Mesh for RAE 2822 airfoil.
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F1G. 17. RAE 2822 with M = (.75, a = 3.0, C,, = 1.1325, Cp = 0.0471.

standard high resolution difference schemes [20, 13]. For the
NACADO012 airfoil, three different initial conditions of Mach
numbers of 0.8, 0.8, and 0.85, with different angles of attack
0.0, 1.25, and 1.0 degrees are used. The mesh and the simulation
results after 100 multigrid cycles are presented in Fig. 12, Fig.
13, Fig. 14, and Fig. 15. Similarly, a Mach number (.75 and
angle of attack of 3.0 degrees have been used for the airfoil
RAE2822 calculation, and the mesh and result are given in
Fig. 16 and Fig. 17. The Korn airfoil is designed for a shock-
free transonic solution. The flow distribution around it is very
sensitive to the initial Mach number and the numerical algo-
rithms. In our calculation, the designed shock-free condition
of Mach number 0.75 and angle of attack of 0.0 degrees are

THH

FIG. 18. Mesh for KORN airfoil.
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FIG. 19. Komn with M = 0.75, & = 0.0, C, = 0.6321, Cp = 0.0002,

used; the mesh and the output result are shown in Fig. 18 and
Fig. 19. All these results show that the sieady state scheme
captures shocks with two interior points in the discrete shock
structure, and provides good accuracy for transonic flows.

5. CONCLUSION

Blending the collisional gas-kinetic BGK model into the

fluxes of a finite volume discretization of the conservation
laws offers a promising new approach to the development of
numerical hydrodynamics codes. The numerical analysis for
the gas-kinetic scheme in this paper provides some physical

insight into the flux-vector splitting, Lax—Wendroff schemes,

and the role of artificial diffusion. This scheme contains dissipa-

tion naturally through the kinetic flux vector splitting in the

initial nonequilibrium term fj. At the same time, the high resolu-

tion and multidimensionality of the traditional central difference
schemes are recovered from the equilibrium state g. The nonlin-
ear coupling between g and f; is modeled on the particle relax-
ation process, where the collision time 7 is directly related to
the viscosity coefficient. Also, in this gas-kinetic scheme, the
entropy condition is approximately satisfied for the numerical
solutions, which precludes the emergence of any unphysical
phenomena such as rarefaction shocks. For steady state calcula-
tions, a new method has been presented, which combines the
fast convergence of the multigrid time stepping method with
the favorable shock capturing properties of the gas-kinetic
scheme. The numerical analysis and examples in this paper
suggests that Boltzmann-type scheme could be very useful in
a large number of flow simulations.
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